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Rationale: The hydrogen isotopic composition of lipids (δ2Hlipid) is widely used in

food science and as a proxy for past hydrological conditions. Determining the δ2H

values of large, well-preserved triacylglycerides and other microbial lipids, such as

glycerol dialkyl glycerol tetraether (GDGT) lipids, is thus of widespread interest but

has so far not been possible due to their low volatility which prohibits analysis by

traditional gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/P/

IRMS).

Methods: We determined the δ2H values of large, polar molecules and applied high-

temperature gas chromatography (HTGC) methods on a modified GC/P/IRMS

system. The system used a high-temperature 7-m GC column, and a glass Y-splitter

for low thermal mass. Methods were validated using authentic standards of large,

functionalised molecules (triacylglycerides, TGs), purified standards of GDGTs. The

results were compared with δ2H values determined by high-temperature elemental

analyser/pyrolysis/isotope ratio mass spectrometry (HTEA/P/IRMS), and

subsequently applied to the analysis of GDGTs in a sample from a methane seep and

a Welsh peat.

Results: The δ2H values of TGs agreed within error between HTGC/P/IRMS and

HTEA/IRMS, with HTGC/P/IRMS showing larger errors. Archaeal lipid GDGTs with

up to three cyclisations could be analysed: the δ2H values were not significantly

different between methods with standard deviations of 5 to 6 ‰. When

environmental samples were analysed, the δ2H values of isoGDGTs were 50 ‰ more

negative than those of terrestrial brGDGTs.

Conclusions: Our results indicate that the HTGC/P/IRMS method developed here is

appropriate to determine the δ2H values of TGs, GDGTs with up to two cyclisations,

and potentially other high molecular weight compounds. The methodology will widen

the current analytical window for biomarker and food light stable isotope analyses.
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Moreover, our initial measurements suggest that bacterial and archaeal GDGT δ2H

values can record environmental and ecological conditions.

1 | INTRODUCTION

The stable hydrogen isotopic composition (δ2H value) of water varies

systematically across the globe.1–3 The δ2H values of biological

molecules, in turn, are dependent on the δ2H value of the H2O available

to the producing organism (source water), overprinted by biochemical

processes. The δ2H values of bulk organic matter and individual

compounds are used across a range of disciplines, e.g., in ecology and

biology to trace animal migration patterns and food webs4,5; in forensic

science to identify geographical origins of victims or suspects6; and in

food science to determine the provenance of products such as honey,7

milk,8 and meat.9 The determination of δ2H values has also resulted in

substantial discoveries in archaeology, such as the earliest horse

milking,10 or manuring practices,11 and has improved our

understanding of past environments and precipitation regimes.12–14

The δ2H values of individual lipid biomarkers are particularly

useful in paleoenvironmental studies. In particular, the correlation of

lipid δ2H with source water δ2H has been widely documented,12,15,16

such that leaf waxes are now widely used to reconstruct past

hydrological conditions.12,16–18 Long-chain n-alkanes and other

alkanes are often used in this endeavour because they are – due to

their relatively high pKa (�50) – less susceptible to hydrogen

exchange than the functionalised compound classes commonly found

in soils and sediments. However, a wide range of sedimentary lipids

have been analysed for their stable hydrogen isotopic composition,

including n-alkanes, fatty acids, alkenones, and, to a lesser extent,

sterols and hopanols.19–23

The routine and rapid compound-specific δ2H value

determination of biomarkers (as opposed to labour-intensive

approaches requiring compound isolation and purification) requires

the application of gas chromatography, coupled to an on-line reactor

containing active graphite, converting individual organic compounds

into graphite, CO and H2.
21,24–27 The produced gas is introduced into

an isotope ratio mass spectrometer monitoring m/z 2 (1H-1H) and

3 (1H-2H). This setup requires analytes to be GC-amenable,28 limiting

analyses to compounds of a molecular weight and polarity low enough

to elute at a typical maximum capillary column operating temperature

of 320�C. Therefore, only very few larger compounds (eluting later

than a C36 n-alkane on an apolar stationary phase) have had their δ2H

values successfully determined. Existing measurements were achieved

by implementing long isothermal holds at 320�C but only with highly

purified and 2H-labelled compounds,29 due to the low GC resolution

and δ2H precision associated with this methodology.

However, the δ2H values of large and/or polar compounds can be

of significant interest. For example, the origin of vegetable oils and

milk products can be constrained30–32 with greater specificity when

isotopic fingerprinting is based on individual fatty acids instead of

bulk organics.33,34 Moreover, determining the δ2H values of intact

triacylglycerides (TGs; Figure S1A, supporting information), instead of

hydrolysed and derivatised fatty acids, could have many benefits such

as eliminating derivatisation biases and increased specificity. TGs are

routinely characterised in food forensics by high-temperature gas

chromatography (HTGC35–37), but their 2H signatures are yet to be

exploited. Another potential application arises from very long-chain n-

alkanes that are major constituents of crude oil; their δ2H values

could be used to assess source rock potential,17,18,38,39 or for

correlating different oils and source rocks.38,40

A third suite of applications centres on glycerol dialkyl glycerol

tetraether lipids (GDGTs; Figures S1B and S1C, supporting

information), derived from both Archaea and Bacteria, and of wide

interest in geochemistry. These membrane lipids are frequently used

in proxies for paleotemperature and other environmental variables.41

In many sedimentary archives, GDGTs are of mixed origins (e.g.42,43),

and their δ2H values could thus be used to distinguish terrigenous

from in situ produced GDGTs, for example in marine sediments. This

would substantially improve the application of these GDGT-based

proxies. Moreover, in single-source environments, the hydrogen

isotopic composition of GDGTs could serve as a paleohydrological

proxy, enabling reconstruction of salinity, elevation, or precipitation.

More recently, it has been shown that the δ2H values of bacterial

lipids document the metabolic state of the source organisms,

potentially representing another application in biogeochemical

investigations,44 and this method will allow such investigations to be

extended to archaea.

In order to determine the stable isotopic composition of some of

these large molecules, they are often subjected to chemical

degradation, and only fragments (mostly aliphatic moieties) that are

more GC-amendable than the parent molecule are analysed by

GC/IRMS. For TGs, this involves acid methanolysis,45 while, for

GDGTs, it involves ether cleavage, followed by reduction,46–51 often

including laborious preparative HPLC steps for cleaning and

preconcentration.52 In addition to being labour-intensive, such

procedures under acidic conditions could result in hydrogen exchange.

However, recently, HTGC methods for more direct analysis of

these compounds have been developed; identification and

quantification of GDGTs have been achieved by employing HTGC

coupled to time-of-flight mass spectrometry (HTGC/TOFMS) and

flame ionisation detection (HTGC/FID53,54). Here we develop these

methods further and demonstrate δ2H analysis of polar and high

molecular weight compounds by HTGC coupled to pyrolysis/isotope

ratio mass spectrometry (HTGC/P/IRMS). We compare the values of

purchased, authentic standards (TGs) and purified standards (GDGTs)

determined by elemental analyser/pyrolysis/isotope ratio mass

spectrometry (HTEA/IRMS) with those determined by HTGC/P/

IRMS. We then report the δ2H values of GDGTs in a number of

environmental samples.
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2 | EXPERIMENTAL

2.1 | Standards and environmental samples

Triacylglyceride [TGs; trimyristin (TG 42:0), tripalmitin (TG 48:0), and

tristearin (TG 54:0)] and n-alkane standards were purchased from

Sigma Aldrich (Gillingham, UK). isoGDGT-2 and isoGDGT-3 standards

were purified from biomass of Sulfolobus solfataricus (DSM 1616),

which was grown in two batches (2-L each) of modified Allen

medium55 using water with a δ2H value of −55.0 ± 0.2 ‰. Each batch

was inoculated with 20mL of a late-log phase culture, incubated

aerobically at 76�C with agitation at 200 rpm, and harvested in mid-

log phase at an optical density of 0.442 (600 nm). Cells were collected

by centrifugation at 4�C, frozen in liquid nitrogen, and freeze-dried.

Then 0.5 g of the freeze-dried cell pellet was subjected to

acid hydrolysis in 5mL of 1.5 N methanolic HCl (10 % H2O

made from 37 % HCl) for 3 h at 70�C, and lipids were extracted by

ultrasonication in dichloromethane/methanol (1:1, v/v) as previously

described.56 The total lipid extract (TLE) was dried under a stream of

N2, dissolved in 1mL of n-hexane/isopropanol (97:3, v/v), and filtered

through a 0.45-μm PTFE filter.

To produce purified standards for both HTEA/IRMS and GC/P/

IRMS, individual isoprenoidal GDGTs containing 2 and 3 cyclopentyl

moieties (isoGDGT-2 and isoGDGT-3) were isolated by preparative

normal-phase (NP) high-performance liquid chromatography (HPLC).

To this end, aliquots (25 μL) of the filtered TLE were injected onto a

1100 HPLC system (Agilent Technologies, Cheadle, UK) fitted with an

Econosphere NH2 column (250 × 10mm, 10 μm; Grace/Alltech; VWR,

Radnor, PA, USA). GDGTs were eluted isocratically with a solvent

mixture of 1.35 % isopropanol (IPA) in n-hexane at a flow rate of 1

mLmin−1 for 45min, and the column was cleaned with 16 % IPA for

12min and re-equilibrated to initial conditions for 13min after every

run. GDGTs were recovered by time-based fraction collection,

according to the elution times determined by atmospheric pressure

chemical ionisation mass spectrometry (APCI-MS) using a 1100 MSD

single quadrupole mass spectrometer (Agilent Technologies).57 The

collected fractions were analysed by flow injection APCI-MS on the

same instrument, and subsequently pooled by compound. The purity

of each isolated GDGT was >97 % as assessed by NP and reversed-

phase HPLC/APCIMS analysis of the combined fractions,58 scanning

the range m/z 350–1350.

Environmental samples analysed by GC/P/IRMS included a

sediment sample from a marine methane seep, and a sample from a

Welsh peat.53 In order to improve the gas chromatographic

performance, the GDGTs were purified prior to HTGC/P/IRMS

analysis. The Welsh peat extract was passed over a column containing

130–270 mesh silica (pore size 60 Å; Cat. No. 288608; Sigma Aldrich)

conditioned in methanol, using two column volumes each of hexane,

ethyl acetate/hexane 1:9 (v/v), 25:75, 50:50, pure ethyl acetate, and

methanol. The concentrations of GDGTs in the fractions were

confirmed by adding triglyceride quantification standards and analysis

by HTGC/FID.53 All fractions containing GDGTs (Figure S2,

supporting information) were combined to avoid any isotope

fractionation which may have occurred during column

chromatography.

2.2 | 2H analysis by HTEA/IRMS

The 2H/1H ratios of the triacylglycerides (TGs) and C50 and C60 n-

alkanes were determined via HTEA/IRMS at Elementar UK Ltd (EUK;

Stockport, UK) and the University of Colorado (CUB; Boulder, CO,

USA). CUB also analysed GDGTs. CUB performed HTEA/IRMS on a

Flash HT Plus elemental analyser at 1450�C with a zero blank

autosampler coupled to a Delta V Plus isotope ratio mass

spectrometer via a ConFlo-IV Interface (all from Thermo Fisher

Scientific, Waltham, MA, USA). At EUK, HTEA/IRMS measurements

were performed using a GeovisION system, which comprised a vario

PYRO cube elemental analyser coupled to an Isoprime visION isotope

ratio mass spectrometer (both from EUK). Both laboratories measured

samples using glassy carbon reactors in oxygen-free environments,

and performed multipoint calibrations using reference materials

provided by Arndt Schimmelmann (Indiana University, Bloomington,

IN, USA) to normalise the measured δ2H values against the

international reference Vienna Standard Mean Ocean Water (V-

SMOW). CUB calibrated using 5α-androstane #3 (−293.2 ± 1.0 ‰),

eicosanoic acid methyl ester #Z1/USGS 70 (−183.9 ± 1.4 ‰), and

eicosanoic acid methyl ester #Z2/USGS 71 (−4.9 ± 1.0 ‰), and EUK

calibrated using tetracosane #1: −53.0 ± 1.6 ‰, pentacosane #4:

−263.6 ± 2.2 ‰ and heptacosane #3: −172.80 ± 1.6 ‰, and a

standard provided by the International Atomic Energy Agency,

Vienna, Austria (IAEA CH-7: −100.2 ± 1.0 ‰). Across both labs, the

standard deviation (SD) of triplicate sample analyses was typically <

±0.75 ‰.

Because the oxygen-bound H atoms of the GDGT hydroxyl

moieties are easily exchanged, the 2H content at these positions may

have been altered during solvent extraction/evaporation. We

therefore vapour-equilibrated the dried GDGT fractions with local

deionised water (−121.8 ± 1.3 ‰) before analysis (24 h at 25�C). The

GDGT fractions were then dissolved in ethyl acetate at �10 μg μL−1

and 10-μL aliquots were pipetted into combusted (450�C, 10 h) silver

capsules (4 × 6 mm), which were pre-loaded with small discs (d = 4

mm) of combusted glass fibre filters (Whatman GF/F, Whatman plc,

Little Chalfont, UK) as a solvent adsorbent. The solvent was then

completely evaporated in a closed chamber continuously purged with

N2 (30min at �30mLmin−1). Analysis by HTEA/IRMS was then

conducted as described above.

To test for the efficiency of the vapour equilibration, a synthetic

diglycerol-trialkyl-tetraether (C 46 -GTGT59) was exposed to vapour

of both 2H-enriched water (7 atom % 2H) and local deionised water

(24 h at 25�C). Exposure to 2H-enriched water vapour increased the
2H content of the molecule by 0.1 atom % (from 0.014 to 0.113 atom

% relative to total H), corresponding to a 2H content of �5 atom % at

the OH positions after exposure (assuming that all exchange is

localised to the hydroxyl moieties). Exposure to natural water vapour,

however, did not lead to a change in δ2H within the analytical
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precision of the measurement. The induced 2H content at the OH

positions decreased again to �2 atom % at the OH positions after a

12-h exposure to ambient lab air. Together this indicates that the OH-

bound H of diglycerol tetraethers is readily exchanged with ambient

water vapour, and any 2H enrichment resulting from the evaporation

of OH-containing solvents (e.g. methanol) was probably diminished

either by spontaneous re-equilibration with ambient air, or by the

latest 24-h exposure to natural water vapor in a desiccator as

described above.

2.3 | δ2H value determination by HTGC/P/IRMS

Before analysis by HTGC/P/IRMS, fractions containing GDGTs and

the sample from the Black Sea methane seep were dissolved in 50 μL

pyridine and derivatised to trimethylsilyl ethers with 50 μL 99 % N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA), 1 % trimethylchlorosilane

(TMCS), for 1 h at 70�C. The δ2H value of the TMS moieties used to

derivatise the hydroxyl groups (δ2HTMS) was determined by

derivatisation of sodium palmitate of a known δ2H value (δ2HP,

−239.10 ‰), and analysis by GC/IRMS to yield the values of the

derivatised palmitate, δ2HTMSP, as −82.35 ‰ according to Equation 1.

The use of δ-values in this specific case is possible and recommended

(natural abundance ranges); when larger differences are present, 2H/1H

ratios must be used.

δ2HTMS =
δ2HTMSP �40−δ2HP �31

9
ð1Þ

The δ2H values of derivatised GDGTs δ2Hmeas were corrected by

mass balance to give δ2HGDGT with n representing the number of non-

exchangeable hydrogens of the compounds and k the number of TMS

groups added (1 for archaeol, 2 for GDGTs and hydroxyarchaeol;

Equation 2):

δ2HGDGT =
δ2Hmeas n+ k �9ð Þ

n
−
k �9 �δ2HTMS

n
ð2Þ

This was combined into Equation (3):

δ2HGDGT =
δ2Hmeas n+ k �9ð Þ

n
−
k �40 �δ2HTMSP

n
+
k �31 �δ2HP

n
ð3Þ

Errors of δ2Hmeas were determined according to error propagation

laws:

σ2δ2HGDGT
= σ2δ2Hmeas

� n+ k �9
n

� �2

+ σ2δ2HTMSP
� k �40

n

� �2

+ σ2δ2HP
� k �31

n

� �2

ð4Þ

Samples were screened by HTGC/FID as described by Lengger

et al53 before they were analysed by HTGC/P/IRMS (Isoprime

visION). The instrument comprised a model 7890B gas

chromatograph (Agilent) fitted with an on-column injector, linked to a

GC5 interface (EUK; maintained at 380�C) and a hollow ceramic

reactor, in which a stripped transfer line (Zebron Z-Guard Hi-Temp

guard column, 0.25mm ID, Phenomenex Ltd, Aschaffenburg,

Germany) was inserted carrying analytes from the gas chromatograph,

enabling pyrolysis at 1450�C. A PTV injector was not available on this

instrument, but it was observed to inhibit elution of GDGTs in

separate investigations (data not shown). The ferrules used to connect

the ceramic furnace and the GC column, as well as the He sample line

used as an additional carrier in the HTGC/P/IRMS system, were

100 % graphite. The ion beams at m/z 2 and 3 were monitored. The

H3
+ factor was determined daily or at least every four runs.

Compounds were injected in ethyl acetate (1 μL) and separated on a

Zebron ZB-5HT analytical column (7m × 0.25mm × 0.25 μm,

Phenomenex Ltd) with a high-temperature-resistant polyimide

coating, which was fitted to the transfer line (a Zebron Z-Guard Hi-

Temp guard column) that was inserted directly into the reactor (with

the reactor-facing side thermally stripped of polyimide coating),and an

exhaust to allow diversion of the solvent peak to waste via a glass Y-

splitter (Phenomenex Ltd), in which columns were fixed with high-

temperature resin. Helium was used as the carrier gas at a flow rate of

2.2 mLmin−1, and the oven was programmed as follows: 1min hold at

70�C, increase by 10�Cmin−1 to 350�C, followed by an increase at

3�Cmin−1 to 400�C (10min hold). The results were calibrated using a

mixture of n-alkanes (B3, Arndt Schimmelmann) according to Sessions

et al,21,60 which was injected after at least every four analyses (root

mean standard errors (RMSEs) detailed in Table S1, supporting

information), and analysed using a He flow of 1mLmin−1, with a

different temperature program (injection at 50�C held for 1min

followed by an increase of 10�Cmin−1 to 300�C and a 10min hold).

The resultant calibrated δ2H values were calculated based on the

derived linear regression. The RMSEs of the normalised values of the

n-alkane mixture were typically between 4 and 6 ‰, and never

exceeded 10 ‰. Data were processed using ionOS stable isotope

data processing software (EUK), using an automated multi-point

linearisation based on the certified values of the 15 individual n-

alkanes comprising the B3 standard.

The fractionation factor εH2O/GDGT was determined from the

δ2HH2O and the δ2HGDGT values (Equation 5).

εGDGT=H2O =
δGDGT + 1
δH2O + 1

−1

� �
ð5Þ

3 | RESULTS AND DISCUSSION

3.1 | Chromatographic method

The modifications to the GC/P/IRMS instrumentation enabled

operating temperatures of up to 400�C. Utilisation of a 7 m column

and on-column injection (as previously discussed53) enabled elution of

isoGDGTs up to GDGT-3, as well as acceptable values for the B3
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standard. The HTGC/P/IRMS setup required a polyimide-coated

column rather than the metal column commonly employed in HTGC

methodologies, as this allowed flow diversion via a glass Y-splitter in

which the column was secured using high-temperature resin (no other

modifications to the standard Elementar flow diversion system were

made). The glass Y-splitter ensured minimal thermal mass. The small

ID of the ceramic reactor and insertion of the transfer line close to the

pyrolysis site, and the lack of contact with any metal surfaces (glass Y-

splitter instead of metal valve, silicon transfer to pyrolysis site in

ceramic reactor), have probably contributed to avoiding the peak

broadening and fronting often observed in GC/P/IRMS. Furthermore,

the pneumatically operated heart-cut valve, enabling diversion of the

solvent away from the furnace reactor, was moved to a location

outside the GC oven in order to avoid potential leaks associated with

the high temperatures. Extended (>10min) high-temperature

(>400�C) isothermals, such as used successfully with metal columns to

analyse isoGDGTs by HTGC/FID and HTGC/TOFMS,53 could not be

employed to elute isoGDGTs in analogous HTGC/P/IRMS analyses

due to the comparatively lower stability of the polyimide-coated

columns at these temperatures.

The unusual HTGC configuration, with a short 7-m column, high

flow, and on-column injector, was tested by analysing a mixture of

15 n-alkanes: the so-called Indiana B-standard mix routinely used for

standardisation of GC/P/IRMS results. Baseline separation of

individual n-alkane peaks and acceptable root mean square errors

were achieved with this method (Figure 1A): this standard was

subsequently used for quality control and isotope calibration. The

root mean square error (RMSE) and linearisation equations for all

analyses of the standards are given in Table 1 and Figure S3

(supporting information), with linearisation applied to the samples

based on the most recent analysis of the standard. The RMSE for all

accepted analyses was always below 10 ‰; whenever this value was

exceeded, inlet maintenance or column changes were performed. An

n-alkane standard containing higher molecular weight compounds

(up to C60, Figure 1B), a mixture of triacylglycerides (Figure 1C), a

seep sample containing GDGT-0, -1. -2, and -3, and the two GDGT

standards (GDGT-2 and -3) (Figure 1D) were analysed and the

chromatograms were similar to previous results employing HTGC/FID

and a 7-m column.53 The brGDGTs eluted earlier than the isoGDGTs

(cf.53).

3.2 | Accuracy and precision of δ2H values of high
molecular weight compounds

TG reference compounds and purified GDGT standards were used to

test the methodology for accuracy by determining the δ2H values of

these compounds by HTGC/IRMS at GC temperatures of up to 400�C

as well as by EA analysis. The prepared isoGDGT-2 and isoGDGT-3

standards were analysed by one laboratory (CUB), while the

purchased standards were examined by HTEA/IRMS in two different

laboratories (CUB and EUK). The average δ2H values determined for

the TGs were within 5 ‰ for all analyses (Table 1, Figure 2). The

HTGC-analysed samples generally yielded δ2H values between the

values determined by the EA analyses. The standard deviations were

smaller for the EA methods (<2 ‰) than for the HTGC method (9–18

‰, which represents 2–3× the typical precision of δ2H value

determinations by GC/P/IRMS,61 and is thus a larger error than

expected). Often, the precision of GC/P/IRMS measurements is

determined using the same concentration, while here the injection

concentrations varied. This probably contributed to the high standard

deviation, and we investigate this further below. It is expected that

further application of this technique – and routine analysis of TGs, as

compounds of particular interest to the food industry – will lead to

improvements in analytical precision as methods are improved by

optimising solvents, injection temperatures, and concentrations. The

δ2H values determined for the high molecular weight n-alkanes with

50 and 60 carbon atoms (Table 1) were more variable among all

F IGURE 1 GC/P/IRMS
chromatograms under HT conditions;
different temperature ramps were
applied to the different mixtures: A, a
mixture of n-alkanes up to n-C30 with
known δ2H values (Indiana
B3-standard); B, a mixture of long-chain
n-alkanes up to n-C60; C,
triacylglycerides; and D, a sample from a

Black Sea methane seep with GDGT-2
and GDGT-3 standards shown as inserts;
note that the small second peak in
GDGT-2 was a contaminant introduced
during analysis that did not affect the
measurement [Color figure can be
viewed at wileyonlinelibrary.com]
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methods and laboratories. This was surprising, and possibly a result of

insufficient mixing of these large waxy compounds before distribution

to other laboratories.

The δ2H values of purified GDGTs obtained by HTEA/IRMS and

HTGC/P/IRMS (Table 1) were not significantly different for GDGT-2

at a high confidence level (Welsh's t-test, df = 2, t = 1.32, p = 0.32).

However, for GDGT-3, which eluted later, the δ2H value derived by

HTGC/IRMS was 9 ‰ higher than that determined by HTEA/IRMS

(df = 2, t = 3.32, p = 0.080). A high baseline could be a possible cause

for this discrepancy. However, ionOS software applies an automated

correction. Both GDGTs eluted on an isothermal baseline when the

samples were injected (Figure 1D). Another cause could be

fractionation due to chromatographic separation, adsorption to cold

spots, or thermal decomposition. Another possibility is minor

contamination of GDGT-3, resulting in a flawed HTEA/IRMS

measurement but not affecting HTGC/P/IRMS measurements;

however, this would be surprising as GDGT-2 and GDGT-3 were

isolated from the same organism and the HTEA/IRMS results match

expectations of similar δ2H values. The standard deviation of 5–6 ‰

achieved for purified GDGTs using the HTGC/P/IRMS system is

similar to the precision of lower molecular weight compounds on a

conventional GC/P/IRMS instrument.61

3.3 | Response vs accuracy

Whilst GDGTs are ubiquitous, they are typically only present at ppm

to ppb concentrations in environmental samples such as sediments

and soils. In addition, many high molecular weight compounds are not

very soluble in solvents suitable for GC/IRMS, and on-column

injection only allows small amounts of sample to be used. Therefore,

only small amounts of GDGT (ng) were injected for each HTGC/P/

IRMS analysis. To assess accuracy in relation to signal intensity,

different concentrations of the TG standard were tested and

compared with peak heights (Figure 3). This yielded a response of

0.07–0.08 nA per ng H per compound for m/z 2 (equivalent to 70–80

mV on an isotope ratio mass spectrometer with a 109 Ohm resistor

on the operational amplifier for the m/z 2 Faraday cup). Below

�0.25-nA peak height, the values begin to deviate substantially

(by �20 ‰) from the values measured by HTEA/IRMS, with

differences of up to 400 ‰ when the peak heights were around 0.1

nA. We thus excluded peak heights <0.25 nA, corresponding to less

than 3.5 ng H injected on column, from any further analysis. Typical H

amounts required to achieve 3–5 ‰ precision were �10 ng,

translating to m/z 2 peak heights of 0.7–0.8 nA.

3.4 | GDGTs in environmental samples and
εH2O/isoGDGT

A sample from a Mediterranean cold seep53 was analysed, and δ2H

values for archaeol, hydroxyarchaeol, GDGT-1, and GDGT-2 were

determined to be −245 ± 7, −253 ± 13, −216 ± 15, and −225 ± 14 ‰,

respectively (n = 3; Figures 1D and 4). These values show a limited

range, as expected for ether lipids derived from a common archaeal

source, and are similar to published δ2H values of the biphytanes of

TABLE 1 δ2H values determined by HTEA/IRMS and HTGC/P/IRMS

HTEA/IRMS

(Elementar)

HTEA/IRMS

(CUB) HTGC/IRMS

Mean St. dev. N Mean St. dev. N Mean St. dev. N

[‰ V-SMOW] [‰ V-SMOW] [‰ V-SMOW]

GDGT-2 - - - −181.6 0.4 3 −186 4 3

GDGT-3 - - - −182.6 0.2 3 −173 7 3

C42-TG 42:0 −235.0 0.5 4 −238.0 0.7 3 −232 9 9

C48-TG 48:0 −219 2 3 −224.1 0.3 3 −223 18 7

C54-TG 54:0 −225.9 0.4 4 −228.2 0.7 3 −223 12 7

n-C60 alk −206 5 3 −214.0 0. 4 3 −196 3 3

n-C50 alk −199.29 0.02 4 −202.05 0.06 3 −188 3 3

F IGURE 2 δ2H values of purchased triacylglyceride standards and
isolated GDGTs determined by HTEA/IRMS compared with values
determined by HTGC/P/IRMS; values and standard errors are given in
Table 1 [Color figure can be viewed at wileyonlinelibrary.com]
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GDGTs in Sulfolobus spp. determined after ether cleavage (−229 to

−257 ‰46). However, the values are not identical: the diphytanyl

glycerol diether lipids archaeol and hydroxyarchaeol were 2H-

depleted relative to the GDGTs. Although the difference between the

di- and tetraethers is small, and similar to what is commonly observed

between different fatty acids from the same organism,62 it could

potentially reflect different archaeal origins, given that ANME-2 group

Archaea appear to preferentially produce GDGTs in cold seep settings

(e.g.63). This would be particularly true if the differing source Archaea

exhibit different metabolisms (see below).

The value of εH2O/GDGT for the Sulfolobus cultures used to purify

the standards was determined as −134 ‰ and was not as large as

previously reported εH2O/GDGT values (−213 to −161 ‰46). The

application of this fractionation factor to the environmental iso-

GDGTs would nonetheless result in an unrealistic δ2H value for the

seawater of −93 ‰, suggesting that metabolism, salinity,

temperature, and other factors contribute strongly to the extent of

fractionation.

The values of δ2H of GDGT-0 from the peat (Figure S4,

supporting information) were similar to those of the isoGDGTs in the

seep sample (−235 ± 3 ‰, n = 2), whereas the values for brGDGTs

(integrated as one peak) were relatively enriched in 2H (−176 ± 6 ‰,

n = 6). It is possible that the 2H-enrichment of brGDGTs relative to

co-occurring isoGDGTs could be due to fractionation associated with

the biosynthetic pathways for isoprenoidal (isoGDGTs) vs n-acyl lipids

(brGDGTs), in which isoprenoidal lipids (which undergo successive

hydrogenation) exhibit more 2H-depleted signatures.21,64 However,

recently, it has also been shown that the energy and metabolism

pathways of source organisms are highly correlated with the δ2H

values of their lipids44,65,66; it is also thought that NADPH/NADH

ratios and transhydrogenases play an important role, particularly in

anaerobic organisms.67–70 In general, heterotrophic bacteria

consuming TCA-cycle intermediates exhibit δ2H values similar to or

more positive than those of the source water, heterotrophs

assimilating carbohydrates are depleted relative to source water, and

photoautotrophic and chemoautotrophic bacteria show the greatest
2H-depletion.44 While archaeal metabolisms were not examined in

this work in detail, some of our results are consistent with the idea

that chemoautotrophic archaea are the presumed producers of

isoGDGTs in both settings, and heterotrophic bacteria are thought to

be the producers of brGDGTs.71

The differences between the peat and seep samples for

isoGDGTs are unexpected: As the δ2H value of the peat water is

probably around −52 ‰1 – a 2H content that is depleted compared

with seawater – we expected isoGDGTs from peat to also be

depleted in 2H relative to GDGTs from marine environments.

However, the isoGDGTs from peat are up to 10 to 20 ‰ more 2H-

enriched than those from the seep, invoking a difference in metabolic

state between the anaerobic methanogens in peat, and the anaerobic

methane-oxidising communities in the seep. It could also indicate

synthrophy, which has been shown to affect the 2H values of lipids.68

These findings speak to the potential of isoGDGT δ2H analyses in

F IGURE 3 Measured δ2H values compared with peak heights. A,
RMSE of the B3 mixture compared with peak heights of the minimum
peak height in the mixture. B, Difference between δ2H values of TGs
determined by HTGC/P/IRMS from values determined by
HTEA/IRMS, plotted vs peak height [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 4 δ2H values of ether lipids determined from
environmental samples. brGDGTs and GDGT-0 were extracted from a
peat (triangles) and all other compounds derived from a methane seep
(circles). Error bars represent standard deviations
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probing microbial ecology and metabolic state, while brGDGTs, which

are presumably of heterotrophic bacterial origin in peat settings, could

prove useful as proxies for source water δ2H and hydrology.

The novel HTGC/P/IRMS method enables the determination of

the δ2H values of compounds with a high molecular weight, including

TG and GDGTs, thus extending the range of analytes for δ2H value

determination. The accuracy and precision are as low as 3 ‰ in some

cases and comparable with those from HTEA/IRMS. Our initial

measurements suggest that bacterial and archaeal GDGT δ2H values

are probably related to both environmental parameters, and the

metabolic and ecological function of the source organisms. Future

applications include but are not limited to food forensics, archaeology,

oil-source rock correlations, microbial ecology, and paleoclimate.
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