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Significance

Growth rate, how quickly 
organisms grow and reproduce, 
is a key feature of biology. 
However, there are few 
measurements of microbial 
growth rates in soil, despite its 
crucial importance to terrestrial 
ecosystems and global 
environmental change. By 
measuring the uptake of 
isotopically labeled water, we can 
quantify microbial growth, even 
at exceedingly slow rates. We 
find that the growth rates of soil 
microorganisms are slower than 
those typically observed in 
culture as well as most previous 
estimates in soil. Surprisingly, we 
observe that lower-biomass soils 
exhibited faster growth than 
high-biomass soils and that more 
abundant microorganisms are 
not necessarily faster growing. 
Our results underscore the 
importance of considering slow 
and variable growth rates when 
studying microorganisms and 
their contributions to 
ecosystems.
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The rate at which microorganisms grow and reproduce is fundamental to our under-
standing of microbial physiology and ecology. While soil microbiologists routinely 
quantify soil microbial biomass levels and the growth rates of individual taxa in 
culture, there is a limited understanding of how quickly microbes actually grow in 
soil. For this work, we posed the simple question: what are the growth rates of soil 
microorganisms? In this study, we measure these rates in three distinct soil environ-
ments using hydrogen-stable isotope probing of lipids with 2H-enriched water. This 
technique provides a taxa-agnostic quantification of in situ microbial growth from 
the degree of 2H enrichment of intact polar lipid compounds ascribed to bacteria 
and fungi. We find that growth rates in soil are quite slow and correspond to average 
generation times of 14 to 45 d but are also highly variable at the compound-specific 
level (4 to 402 d), suggesting differential growth rates among community subsets. 
We observe that low-biomass microbial communities exhibit more rapid growth rates 
than high-biomass communities, highlighting that biomass quantity alone does not 
predict microbial productivity in soil. Furthermore, within a given soil, the rates at 
which specific lipids are being synthesized do not relate to their quantity, suggesting 
a general decoupling of microbial abundance and growth in soil microbiomes. More 
generally, we demonstrate the utility of lipid-stable isotope probing for measuring 
microbial growth rates in soil and highlight the importance of measuring growth 
rates to complement more standard analyses of soil microbial communities.

soil microbiology | growth rate | lipidomics | stable isotope probing

The rate of microbial growth is a parameter commonly invoked in biogeochemical models 
of carbon flux, nutrient uptake, ecosystem productivity, and other soil assessments. 
However, growth rates of microorganisms are extremely variable, with estimated generation 
times ranging from minutes in laboratory-based culture to many months and years for 
organisms living in the Earth’s subsurface (1–3). Drastically different lifestyles and strat-
egies characterize the microbial world, with oligotrophic systems sustaining slow-growing 
organisms on timescales far beyond those typically observed in more resource-rich envi-
ronments that select for rapid growth and short generation times (4, 5).

Numerous studies have measured soil microbial biomass with the assumption that the 
size of the standing pool of microbial biomass is an important metric of soil microbial 
productivity (6–13). However, static biomass assessments are not necessarily a measure 
of the influence that microorganisms might have on ecosystem processes in real time, 
including nutrient and carbon cycling. Given that substantial numbers of microbial cells 
in soil may be slow-growing or dormant, it is important to assess the degree to which 
microbial activity is predicted by microbial abundance (14, 15) We cannot assume a priori 
that microbial communities with larger standing biomass are necessarily more productive. 
Just as net primary production, not standing biomass, is used as a growth parameter in 
plant systems, a similar metric is required to assess the productivity of soil microbial 
communities.

Growth rate is a critical parameter with which to assess ecosystem function, but there 
remains a lack of consensus around methods for measuring in situ microbial growth in 
soil systems. As a result, microbial growth rates in soil are poorly constrained, with pre-
viously reported community-level generation times varying by several orders of magnitude, 
variation that is strongly influenced by methodology (Fig. 3) (16–24). For a thorough 
overview of the preexisting methods for measuring soil microbial growth rates, see ref. 17.

Stable isotope tracers (e.g., 13C, 2H, 15N, 18O) have been used to assess microbial activity 
in a wide variety of systems, from clinical samples to the deep biosphere (3, 16, 25–31). 
Stable isotope probing (SIP) relies on the addition of an isotopically labeled tracer followed 
by time-series measurements to calculate the rate of tracer incorporation into biomolecules 
by active microorganisms. SIP, unlike methods that rely on cell counting or biomass 
estimation, can provide information on biosynthetic or metabolic turnover independent D
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of both the size of the standing biomass pool and the population 
dynamics of the community (i.e., population growth, steady state, 
or decline). Thus, SIP approaches are well suited to assess growth 
rates in soils, where standing biomass pools may vary widely, and 
population dynamics may be spatially or temporally variable.

Phospholipid fatty acids (PLFAs) have been routinely used to 
characterize soil microbial communities and provide two key 
advantages as biomarkers. First, PLFAs rapidly degrade upon cell 
death and are considered to represent only living organisms 
(32, 33). In contrast, other biomarkers such as soil DNA may 
survive for long time periods after cell death, potentially con-
founding efforts to study living cells (34). Second, despite their 
limited taxonomic information, quantification of PLFAs provides 
accurate estimates of microbial biomass and population size and 
can sensitively detect high-level shifts in the microbial community 
(35, 36). Here, we combine hydrogen SIP with traditional PLFA 
analysis in order to i) sensitively measure rates of microbial growth 
from living biomass and ii) determine the extent to which biomass 
abundance predicts microbial growth rates. To this end, we employ 
a dilute deuterated water (2H2O) tracer (2F = 5,000 ppm, δ2H = 
31,357 ‰ vs. VSMOW) because all organisms incorporate 
water-derived H into their lipids during growth, and the addition 
of labeled water should not select for or against the growth of any 
organisms, thus rendering the tracer taxa-agnostic and nutrition-
ally neutral. The incorporation of 2H from 2H2O into microbial 
membrane lipids can be measured by gas chromatography/pyrol-
ysis/isotope ratio mass spectrometry (GC/P/IRMS) along a time 
series and converted into a growth rate, as previously demonstrated 
with clinical samples and marine sediments (26, 27, 37–40). This 
method, which we abbreviate as lipidomic hydrogen stable isotope 
probing (LH-SIP), offers several advantages for the estimation of 
microbial growth rates in situ. First, it allows us to use reasonably 
short incubation times (days) to measure the generation times of 
microorganisms, even if they are very long, as this method requires 
only a small fraction of lipids to be newly synthesized. Moreover, 
all microorganisms synthesize lipids regardless of their stage in the 
cell cycle or metabolic activity. Unlike nucleic acids and proteins, 
which can be resynthesized for cellular maintenance and repair 
even in the absence of growth, lipids are less likely to require repair 
and thus provide a more specific measurement of membrane and 
cell growth (41).

Isotope ratio mass spectrometers have a wide dynamic range 
that is well-suited for capturing the trace isotopic incorporation 
that is expected from exceptionally slow growth rates. The accuracy 
and dynamic range of IRMS instruments for measuring the iso-
topic ratio of 2H/1H allow for accurate quantification of 2H incor-
poration corresponding to a fraction of an organism’s generation 
time in the presence of less than 1% 2H2O (26) (SI Appendix, 
Supplementary Text).

For this study, we focused on three soils that represent different 
site and edaphic characteristics (Dataset S1), with these soils har-
boring distinct microbial communities (SI Appendix, Fig. S3). We 
directly measured growth rates in these soils with compound-specific 
LH-SIP, highlighting the utility of our approach, the relevance of 
measuring microbial growth rates in soil, and the broader implica-
tions of our results for understanding soil microbial dynamics.

Results and Discussion

Measuring the Growth Rates of Soil Microorganisms. We 
measured 2H incorporation into soil microbial PLFA components 
at three time points during a 7-d incubation period in the 
presence of a dilute heavy water (2H2O) tracer. We detail these 
experiments in Materials and Methods. In brief, we incubated three 

soils (a sub-alpine conifer forest, prairie grassland, and an alpine 
tundra soil) in the presence of 5,000 ppm (δ2HVSMOW = 31,357 
‰) 2H2O, extracted intact PLFAs, and measured their abundances 
by gas chromatography flame ionization detection (GC-FID). 
The structures of PLFAs were determined by gas chromatography 
mass spectrometry (GC-MS) with PLFA isotopic compositions 
measured by gas chromatography isotope ratio mass spectrometry 
(GC-IRMS). We report isotopic values as fractional abundance 
(2F) in units of ppm where 2F = 2H/(2H + 1H). We observed 2H 
incorporation into fatty acids to range from 0 to 2,000 ppm in 
the presence of a 5,000-ppm 2H2O tracer (Fig. 1A). We inferred 
the growth rate and apparent generation times of microbial 
lipids using a previously derived relationship (26) (SI Appendix, 
Supplementary Text). In short, microbial growth (µ) is a logarithmic 
function of incubation time and the fractional hydrogen isotopic 
enrichment of new biomass relative to that of biomass at the start 
of the incubation. We report both lipid-specific growth rates as well 
as the abundance-weighted mean (i.e., community-level mean) 
growth rate for each soil. We report growth rates (day−1) at both the 
compound-specific level and as assemblage-level means weighted by 
compound-abundance. We also calculate generation times (days), 
a derived statistic estimating the time for complete reproduction 
of living biomass during clonal growth (Materials and Methods and 
SI Appendix, Supplementary Text). While the majority of the PLFAs 
detected are sourced from bacteria (42), PLFAs attributable to fungi 
(42, 43) are also reported.

Rates of Microbial Growth in Soil Are Slow. The grassland and 
conifer forest soils both exhibited respective abundance-weighted 
mean microbial growth rates of 0.0358 d−1 and 0.0489 d−1 
(corresponding to mean generation times of 19.3 d and 14.1 d 
respectively). Growth was far slower (0.0154 d−1) in the alpine 
tundra (mean generation time of 44.9 d). The alpine tundra site 
experiences the lowest mean annual temperature (MAT) of all the 
sites studied here, with a MAT of −3 °C (44), and is characterized 
by short (30 to 90 d) and cool growth seasons, where soil 
respiration begins immediately after soil begins to thaw underneath 
seasonal snowpack (45). The generation times we observed under 
conditions analogous to the warm season (20 °C) suggest that, even 
in the warm season, the majority of the microbial community at 
this site may not complete a single cell cycle.

Differences observed between specific compounds in all soils 
indicate that different taxonomic groups within a given soil may 
exhibit growth rates between 0.1629 and 0.0017 d−1, correspond-
ing to generation times between 4.3 and 402.1 d (Dataset S4). 
This vast range indicates highly variable growth rates across differ-
ent constituents of the soil microbiome (Fig. 1B). The majority 
of soil microorganisms in our study appear to be growing at 
extremely slow rates when compared to the maximum potential 
growth rates of many bacteria grown in culture (where generation 
times typically range from <1 to 100 h) (46). Although it is not 
surprising that the maximal growth of bacterial isolates in culture 
conditions does not represent in situ growth rates in soil, our 
finding that average, abundance-weighted generation times in soil 
microbial communities range from 14 to 45 d suggests that most 
soil microbes are oligotrophic, slow-growing, and/or dormant (15, 
47), and studies of microbial growth in vitro may not be easily 
applicable to understanding microbial growth in situ.

Despite the slow growth rates inferred from our LH-SIP 
approach, these values should still be considered likely overestimates 
of ambient microbial growth rates. This is because the experimental 
conditions (conditions applied to many tracer approaches: water 
addition, sample homogenization, and stable temperatures) may 
provide more favorable growth conditions for many microbes D
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compared to in situ conditions. The slow community-level and 
compound-specific growth rates of soil microbial communities 
measured here point to the importance and ubiquity of slow-growing 
life in soil systems.

Microbial Biomass Quantity Does Not Predict Growth. In all soils 
examined, we find no strong relationship between compound-
specific abundance and inferred growth rate (Fig. 2). Compounds 
exhibiting more rapid rates of production were not necessarily more 
abundant than compounds exhibiting slower production rates. 
Overall, there exists a weak negative correlation across all samples 
between compound abundance and growth rate (r = −0.144, 
p = 0.016, Pearson’s). This indicates that rapidly growing taxa do 
not represent a large fraction of the soil microbial community at 
our field sites and, instead, most of the microbes found in bulk 
soil are relatively slow growing or dormant. Furthermore, on the 
time scale of our SIP incubation (0 to 7 d), growth of certain 
taxa did not clearly alter the bulk fatty acid profiles of the soils 
(SI Appendix, Fig. S4), contrary to what one might expect if a 
minority of taxa were overgrowing the community. The uniformity 
of PLFA profiles throughout the incubation supports the utility 
of 2H2O as a tracer of in situ microbial growth, as there was no 
apparent modification of microbial growth or population with 
the addition of the tracer.

Because PLFA abundance is a measure of living microbial bio-
mass (43), we next sought to examine whether the total quantity 

of microbial biomass predicted assemblage-level rates of microbial 
growth. In other words, do soils with more total microbial biomass 
also have higher rates of microbial growth? In the three soils exam-
ined here, we observed large differences between the sites in the 
total quantity of PLFAs, with the conifer forest and grassland soils 
having smaller quantities of intact lipids (150.7 and 154.3 µg g−1, 
respectively) than the tundra soil (2,913.2 µg g−1). These differ-
ences in PLFA abundances are mirrored by differences in organic 
matter loading for each of the soils (Dataset S1). At the same time, 
growth rates were slower in the tundra soil and faster in the grass-
land and conifer forest soils (Figs. 1 B and 2, Inset). Although 
microbial biomass has been considered a proxy for the microbial 
productivity of a given soil (6–13), here we find that total micro-
bial biomass is inversely related to the rate at which this biomass 
is turning over. Our dataset delineates two distinct soil microbi-
ome profiles: a comparatively fast growth but lower biomass soil 
(typified by the conifer forest and grassland soils) and a relatively 
slower growth but biomass-rich soil (the alpine tundra) (Fig. 2, 
Inset). We suggest that soil microbiomes should be assessed along 
independent axes of microbial biomass quantity and growth rate, 
parameters that do not necessarily covary. The location of any 
given soil along these axes is likely determined by biotic and abiotic 
conditions of the soil environment.

Lipidomic Data Provides Coarse Taxonomic Growth Signals. Our 
16S rRNA gene sequencing results (Materials and Methods) show 

A

B

Fig. 1. ∆2H enrichment, defined as change in 2F (ppm) relative to the start of the incubation, of microbial biomass increases over the course of the incubation 
(A), allowing the calculation of compound-specific and abundance-weighted-mean growth rates (B). The abundance-weighted mean ∆2H enrichment (A) is shown 
in bold, whereas compound-specific ∆2H are shown as thin lines. Growth rates (B) were calculated using the integrated ∆2H between 0 and 7 d. Error in growth 
rate corresponds to the propagated uncertainty of isotopic measurements and tracer assimilation (SI Appendix, Supplementary Text). Data used to generate this 
figure are available in Dataset S4.
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that the microbial communities in the soils examined were distinct 
but composed of bacterial taxa that are typically dominant in soils 
(SI Appendix, Fig. S3): Acidobacteria, Actinobacteria, Bacteroidetes, 
Chloroflexi, Proteobacteria, Planctomycetes, and Verrucomicrobia 
(48). To examine whether any of these phyla could be distinguished 
with our lipidomic data, we mined the fatty acid profiles of 4,959 
taxa included in the Bacterial Diversity (BacDive) metadatabase 
(49). We observed that bacteria, at the phylum level, are broadly 
distinguishable based on their fatty acid profiles (SI  Appendix, 
Figs. S1 and S2), a finding supported by previous characterization 
of microbial PLFAs (50, 51). We also note that all major PLFAs 
we predicted to be present and representative of these phyla, based 
on our analysis of BacDive profiles, were indeed represented in our 
extracted lipid pools. We find that growth rate patterns grouped 
by compound class are remarkably similar across all sample sites 
(Fig.  1B). For example, terminally branched bacterial iso-15:0 
and iso-17:0 saturated fatty acids consistently exhibited some 
of the fastest rates of growth in each soil. These fatty acids are 
closely associated with the Acidobacteria and Bacteroidetes phyla 
(SI Appendix, Fig. S1). Conversely, the 18:1 and 18:2 unsaturated 
fatty acids exhibited slower growth rates. A large portion of the 
18:1 and 18:2 unsaturated fatty acids likely represents the slower 
growth of saprotrophic fungi (51–57) whose lifestyles may differ 
markedly from those of their bacterial neighbors.

We note that the LH-SIP method is limited in its taxonomic 
specificity due to the conserved nature of many groups of lipids 
(i.e., multiple bacterial taxa produce the same membrane lipids) 
and the fact that the lipid profiles of some major soil bacterial taxa 
have not been well characterized (42). However, conservative infer-
ences can be made regarding growth rates of bacteria and fungi at 

broad taxonomic levels based on the relative distributions of fatty 
acids, as demonstrated in previous studies (35, 36, 51, 58). 
Therefore, we provide the BacDive dataset (Dataset S2) for the 
benefit of researchers interested in using our approach in soil and 
other systems. However, we emphasize that lipidomic datasets like 
these benefit from sequencing-based approaches to couple taxo-
nomic information on microbial communities to observed growth 
signatures.

Comparing Estimates of Soil Microbial Growth. To assess 
how LH-SIP-derived estimates of microbial growth relate to 
previous estimates, we collected and compared 26 reports from 
prior studies that describe microbial growth rates in soil. These 
published estimates demonstrate disparate ranges that appear 
highly dependent on the methodology applied (16–24, 59–66) 
(Fig.  3). Previously published assemblage-level growth rate/
turnover estimates vary between 0.002 and 0.356 d−1 (apparent 
generation times corresponding to 1.94 to 294 d). Much of this 
prior work has measured the incorporation of isotopically labeled 
thymidine (TdR) or leucine (Leu) (18–21, 59) and reported 
community-level growth rates typically between 0.08 and 0.35 
d−1 (generation times of 1.95 to 10 d), aside from a single study 
reporting doubling times of 107 to 170 d (64) (Fig. 3 and Datasets 
S3 and S4). A potential source of difference in results between the 
LH-SIP method and these approaches is that DNA- and protein-
amendment methods may likely bias toward faster-growing 
organisms because cells undergoing substantial translation or 
genomic replication are necessarily going to be captured at higher 
frequency and fidelity than organisms growing slowly. TdR and 
Leu approaches specifically could also stimulate microbial growth 

μ

μ

Fig. 2. Compound-specific PLFA abundance, measured via GC-FID (µg per g soil), plotted against estimated growth rates (day−1) in each of the three soils 
examined. There exists a very weak but statistically significant negative relationship between compound-specific growth rate and abundance (r = −0.14399, 
p = 0.016, Pearson’s). The thin dashed line notes the result of a linear model fit (y = −0.00025x + 0.02078, R2 = 0.02), further indicating a slightly negative trend 
with poor correlation. These results highlight the lack of a clear relationship between compound-specific pool sizes and growth rates in each soil. However, on 
the bulk scale, soils with lower total biomass, B, exhibited faster assemblage-level growth rates than the alpine tundra soil, which is relatively high in microbial 
biomass (Inset). This hints at a possible reciprocal relationship between total soil microbial biomass levels and microbiome turnover at the system level.
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through the provision of carbon and nitrogen in the tracer solution. 
Perhaps most importantly, the short incubation times typically 
used with these approaches (usually <48 h) likely lead to only 
those taxa with generation times shorter than or approaching the 
incubation time incorporating sufficient quantities of the isotopic 
tracer for detection. Microbial taxa with longer generation times 
may not produce enough new DNA or protein to be detectable 
by these methods.

Following our literature survey, we sought to understand the 
utility and sensitivity of LH-SIP as a measurement of slow micro-
bial growth (for more details, see SI Appendix, Supplemental Text). 
In brief, we calculated the propagated uncertainty in growth rates 
by accounting for errors inherent in measuring enriched isotopic 
abundances, soil moisture dilution of the tracer solution, microbial 
assimilation of hydrogen from water, and IRMS instrument pre-
cision. We determined that LH-SIP can accurately distinguish 
(with confidence ≥ 2σ) microbial generation times in the range 
of 5 to 700 d during a 7-d incubation period. IRMS instruments 
are highly sensitive to trace changes in 2H composition and, with 
isotopically enriched samples, are sensitive to growth rate differ-
ences corresponding to 0.0069 d−1 with the incubation parameters 
of our experiments (Materials and Methods). Interestingly, we 
found that hydrogen assimilation efficiency, the proportion of 
lipid hydrogen sourced from water as opposed to other sources 
(e.g., carbon sources), is the main control on uncertainty in 
LH-SIP measurements (SI Appendix, Figs. S7 and S10). In con-
trast, IRMS instrument precision and analytical corrections con-
tribute minor components of the total uncertainty. In samples as 
complex as soil, it is difficult to parameterize hydrogen assimilation 
efficiency for an entire community of organisms, even assuming 
heterotrophy for the bulk of the community. We propose that 
LH-SIP measurements provide a more conservative estimate of 
soil microbial growth that captures the slow-growing majority of 
soil microbes. Because IRMS measurements can capture trace 

incorporation of 2H into the alkyl chains of membrane lipids, 
LH-SIP is uniquely suited to capturing slow growth rates both at 
the compound-specific and bulk scale.

Future Directions for LH-SIP. The growth rates inferred by 
LH-SIP of living cells sharing lipid membrane constituents are 
aggregated. Therefore, growth rate heterogeneity at the cell-to-
cell or species-to-species level cannot be resolved with LH-SIP. 
Single-cell methods including Raman spectroscopy or nanoSIMS 
(3, 28, 67) can elucidate cell-specific variation in growth rates 
while also measuring local mineralogical, elemental, or isotopic 
features. However, single-cell methods can be resource intensive 
and often require separation of intact cells from environmental 
matrices, which can be problematic in soil (68). A benefit of the 
LH-SIP approach is that it can provide community-level insights 
into anabolic growth activity that may be missed at the single-cell 
level, with the possibility for coarse taxonomic resolution that is 
standard for PLFA analysis (33, 35, 36, 51, 69). A two-pronged 
approach that pairs bulk-scale LH-SIP measurements with single-
cell metrics of growth heterogeneity could be powerful.

As noted above, LH-SIP is limited in its taxonomic specificity 
due to the conserved nature of many PLFA classes (51). Because 
LH-SIP yields compound-specific growth rates, this method could 
be used in a highly targeted manner with systems containing less 
complex microbial communities or with strongly defined relation-
ships between taxonomy and constituent lipid classes. Coupling 
LH-SIP with additional SIP (e.g., DNA or protein) or advanced 
lipidomic analyses has further potential to expand our understand-
ing of the microbial physiology of slow growth in natural systems. 
For instance, future LH-SIP studies could take advantage of liquid 
chromatographic systems to elucidate relationships between intact 
polar lipid (IPL) head groups and associated growth rates. The use 
of signature biomarkers (e.g., glycerol dialkyl glycerol tetraether 
lipids (GDGT), bacteriohopanepolyols (BHPs), sterols, etc.) for an 

0.0 0.1 0.2 0.3 0.4

Apparent Growth Rate (day−1)

LH-SIP
(this study)

14 - 45 d

DNA-SIP
2 - 50 d

TdR/Leu
2 - 128 d

Nutrient
Budgeting

21 - 295 d

Fig. 3. Published estimates of soil microbial growth rates (16–24, 59–66) (collected as Dataset S3), including those inferred by LH-SIP (this study). We note that 
estimated growth rates with LH-SIP are much slower than those inferred by many DNA- and protein-based methods. Nutrient budgeting approaches, which 
typically measure the flux of carbon, nitrogen, or phosphorous through a soil to model microbial growth rate, generally lead to conservative estimates of microbial 
growth rates. Bar length corresponds to mean growth or turnover rate (day−1) reported (Materials and Methods). The ranges of corresponding generation times 
(days) are noted underneath the method label.
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organism or group of organisms in a given environment would allow 
for growth rate assignments with greater taxonomic specificity, 
potentially down to the species and strain. For example, LH-SIP of 
phospholipid ether lipids could specifically target the growth rates 
of archaea in natural samples (58). The SIP of PLFAs with 13C (31) 
has been used with great utility in identifying microbial community 
members involved in the degradation of distinct substrates (36, 69) 
or identifying the use of specific metabolic pathways (70): dual 
stable-isotope (2H + 13C) probing of PLFAs holds great potential 
for the study of catabolic and anabolic microbial physiology in soils. 
Finally, LH-SIP could be coupled with already-established 18O-DNA 
qSIP methods to correlate highly sensitive compound-specific 
growth rates with direct sequencing of the active fractions of the 
microbial community.

Relevance of the Slow Growth of Soil Microorganisms. The 
in vitro cultivation and isolation of microorganisms from natural 
systems are notoriously difficult (17, 71, 72). There are numerous 
proposed reasons for this phenomenon, including the fact that 
media formulations are imperfect or select for certain taxa, but 
it is plausible that many “wild” microorganisms are not adapted 
for the rapid growth that is required for isolation and enrichment 
using standard cultivation approaches. Slow growth in soil may 
imply severe limitations on maximum growth rates even under 
ideal laboratory conditions, given that biochemical adaptations 
to slow growth may not be easily overcome in a lab environment. 
Many soil microorganisms in culture are observed to grow 
slowly, even in “ideal” conditions and, in fact, may be inhibited 
by high substrate concentrations (73–76). Our observed growth 
rates (Fig.  1B) suggest that many soil microorganisms may be 
fundamentally difficult to cultivate due to time constraints on 
culturing experiments, as the amount of time for an organism to 
become visible on solid or in liquid media increases exponentially as 
doubling time increases (SI Appendix, Fig. S6). We also emphasize 
that maximum potential growth rates measured in vitro likely do 
not reflect actual growth rates in situ as culture conditions may not 
adequately replicate the availability or paucity of carbon sources, 
electron donors/acceptors, and interactions with other organisms. 
Additionally, maximum potential growth rates [estimated via 
genomic analyses or culture-based experiments (46, 77)]  are 
fundamentally different metrics than a direct measurement 
of growth in an environmental setting: a microbe capable of 
rapid growth will not necessarily exhibit this behavior under 
environmental conditions. This is highlighted by the observation 
that a wide array of microbial groups (including those with high 
maximum potential growth rates in vitro) persist in a dormant or 
nearly dormant state in soil (14, 15).

Conclusions

Here, we present evidence that slow microbial growth is wide-
spread in soil systems. Across the soils analyzed, PLFA abundances 
and growth rates were not strongly correlated at the com-
pound-specific level (Fig. 2), indicating that the most abundant 
taxa are not necessarily the fastest growing. In addition, we 
observed that soils with lower total biomass exhibited higher rates 
of microbial growth, and vice versa. These results challenge the 
idea, often implicit in many studies documenting microbial bio-
mass variation across soils, that higher biomass necessarily equates 
to higher soil microbial productivity. Instead, our results suggest 
that soil microbiomes operate on a continuum of growth rate and 
biomass quantity, with the largest proportion of standing micro-
bial biomass representing oligotrophic or dormant taxa adapted 
to slow growth. Growth rates presented here occur on the order 

of weeks to months, comparable to estimates generated by carbon- 
and nutrient-budgeting models (Fig. 3). Our conclusion that 
slow-growing microorganisms appear to dominate the soil micro-
biome is in line with recent evidence that spatial variability in the 
composition of soil microbial communities typically exceeds the 
temporal variability observed at a given location (78, 79). Slow 
growth rates would be expected to attenuate short-term changes 
in overall microbial community composition, especially in soils 
with longer observed generation times. As microbial growth is a 
key regulator of a wide array of soil biogeochemical processes, our 
findings warrant additional studies that take advantage of the 
LH-SIP method described here to quantify variation in microbial 
growth rates across a broader array of soil types and conditions.

Materials and Methods

Soil Sampling and Incubation. Soils were collected from three locations in cen-
tral Colorado: a conifer forest located at Gordon Gulch Critical Zone Observatory, 
Boulder County, CO (40.01, −105.46); a prairie grassland located at Marshall 
Mesa, Boulder County, CO (39.95, −105.22); and an alpine tundra located 
at Niwot Ridge, Niwot Long-term Ecological Research Program (LTER) (40.05, 
−105.58) near Ward, CO. The top 10 cm of soil was excavated with a surface-ster-
ilized trowel, soils were sieved to 2 mm to remove rocks and plant material and 
homogenized. Soils were stored in the dark at 4 °C before incubations were 
started. For the SIP incubations, a 10-g subsample of each soil was weighed into 
a centrifuge tube and combined with 10 mL of filter-sterilized water with ~5,000 
ppm 2H2O (0.5 at% 2H, δ2HVSMOW ≈ 31,000 s ‰) and incubated at 20 °C for 0, 3, 
or 7 d. Isotopic composition of the incubation water was measured at the end of 
the time series experiment to account for the isotopic contributions of soil water. 
Samples were periodically shaken over the course of the incubation period to 
ensure uniform distribution of the tracer solution. At the end of the incubation 
period, excess incubation water was separated from the soil by centrifugation, 
decanted, and frozen for later isotopic analysis. Soil pellets were immediately 
flash-frozen by submerging in a dry ice ethanol bath and stored at −20 °C until 
lipid extraction.

Water Hydrogen Isotope Analysis. The labeled incubation waters were ana-
lyzed for their H isotope composition (FL) after gravimetric dilution with water 
of known isotopic composition (1:1000 w/w) to get into the analytical range 
of available in-house standards previously calibrated to Vienna Standard Mean 
Ocean Water (VSMOW) and Standard Light Antarctic Precipitation (SLAP). Then, 
1 µL of each sample was measured on a dual inlet Thermo Delta Plus XL isotope 
ratio mass spectrometer connected to an H-Device for water reduction by chro-
mium powder at 850 °C  (80). Measured isotope values in δ notation on the 
VSMOW-SLAP scale were converted to fractional abundances using the isotopic 
composition of VSMOW [RVSMOW = 2H/1H = 0.00015576, (81)] and the relation 
F = R/(1+R) = (δ + 1)/(1/RVSMOW + δ + 1) and corrected for the isotope dilution 
by mass-balance. The resulting isotopic composition of the tracer water was F = 
5,015 ppm 2H (0.5015 at%; 31,357 ‰ vs. VSMOW). The isotopic composition of 
the labeled incubation water was diluted from this value after homogenization 
with the water in the soil depending on soil type and resulted in 4,363 ± 251 
ppm 2H for conifer forest, 4,483 ± 49 ppm 2H for grassland, and 3,492 ± 43 ppm 
2H for tundra soils. The latter values were considered to be what cells encountered 
during tracer incubation (a combination of both the tracer and water present in 
the soil) and were used for all growth rate calculations.

Lipid Extraction. Frozen soil pellets were lyophilized for 24 h. Intact polar lipids 
were extracted from the dry pellets using a modified MTBE-based lipid extraction 
method (82, 83). In brief, 3.0 g of freeze-dried soil sample was added to a PTFE 
centrifuge tube. Then, 3 mL of methanol was added to the sample and vortexed. 
In addition, 10 mL of MTBE was added to the sample and incubated at 1 h at room 
temperature while shaking. To induce phase separation, 2.5 mL of MS-Grade 
water was added, and the mixture was centrifuged for 10 min at 1,000G at room 
temperature. The organic phase was carefully extracted and transferred to an 
organic-clean glass vial. This process was repeated three times in total. Total lipid 
extract (TLE) was dried down under a stream of N2 gas and the sample was stored 
dry at −20 °C until solid phase chromatography. Prior to MTBE extraction, 100 μg D
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of 23-phosphatidylcholine (23-PC) was added to all soils as an internal extraction 
standard. All glassware was combusted at 450 °C for 8 h prior to use. All Teflon 
vessels were solvent washed by sonication in a 9:1 mixture of DCM:MeOH for 
two sets of 30 min. Empty vessels were extracted alongside samples to monitor 
for contamination. No contamination was detected in the extraction blanks.

Phospholipid Separation and Derivatization. Phospholipid extract (PLE) was 
purified from TLE using silica gel chromatography (83) to focus isotopic analyses 
on lipids derived from intact cells [free phospholipids outside of cellular mem-
branes degrade relatively rapidly with half-life estimates of 39 h at 15 °C (32)]. 
Combusted silica solid-phase extraction (SPE) columns containing 500 mg SiO2 
were conditioned by the addition of 5 mL acetone, then two additions of 5 mL 
dichloromethane (DCM). TLE was redissolved in 0.5 mL DCM and transferred to 
the SPE column. Neutral lipids and glycolipids were eluted by the addition of 5 
mL of DCM or acetone, respectively, and then dried down under a stream of N2 
and stored dry at −20 °C. A PLE was eluted by the addition of 5 mL methanol 
to the column. PLE was similarly dried under a stream of N2 and stored with an 
N2-purged headspace at −20 °C.

The PLE was derivatized to fatty acid methyl esters (FAMEs) via base-catalyzed 
transesterification using methanolic base (84, 85). Transesterification was initiated 
by the addition of a mixture of 2 mL hexane and 1 mL 0.5 M NaOH in anhydrous 
methanol to dry PLE. The reaction mixture was allowed to proceed for 10 min at room 
temperature before being quenched by the addition of 140 μL of glacial (~17 M) 
acetic acid and 1 mL water. The organic phase was extracted three times with 4 mL 
hexane and dried down under a stream of N2. A recovery standard of 10 μg 21-phos-
phatidylcholine (21:0 PC) was added to each PLE before derivatization to assess 
reaction yield. Then, 10 μg of isobutyl palmitate (PAIBE) was added after derivatization 
to all samples as a quantification standard prior to analysis.

FAME Quantification and Identification. A Thermo Scientific Trace 1310 
Gas-Chromatograph equipped with a DB-5HT column (30 m × 0.250 mm, 0.10 
µm) coupled to a flame-ionization detector (GC-FID) was used to quantify FAME 
concentrations (µg/g soil) and total amounts (µg extracted) based on peak area 
relative to the 23-PC extraction and PAIBE quantification standards, respectively. 
FAMEs were suspended in 100 μL n-hexane, and 1 uL was injected using a 
split-splitless injector run in splitless mode at 325 °C; split flow was 12.0 mL per 
min; splitless time was 0.80 min; purge flow was 5.00 mL/min; column flow rate 
was constant at 1.2 mL/min. The GC ramped according to the following program: 
80 °C for 2 min, ramp at 20 °C/min for 5 min (to 140 °C), and ramp at 5 °C/min for 
35 min (to 290 °C). The FID was held at 350 °C for the duration of the run. Major 
peaks were identified by retention time relative to a Bacterial Acid Methyl Ester 
standard (Millipore-Sigma) and a 37 FAME standard (Supelco). Peak identities 
were confirmed using a Thermo Scientific Trace 1310 Gas-Chromatograph coupled 
to a single quadrupole mass spectrometer (ISQ) using identical injection and 
chromatography conditions with mass scans from 50 to 550 amu and a scan time 
of 0.2 s in positive ion mode (electron impact). Due to the ambiguity associated 
with identifying double-bond position and stereochemistry for FAMEs containing 
multiple bonds, unsaturated compounds are identified only tentatively. FAMEs 
are referred to using the nomenclature z-x:y, where x is the total number of car-
bons in the fatty acid skeleton and y is the number of double bonds and their 
position (if known), while z-is a prefix describing additional structural features 
of the compound such as methylation and cyclization.

FAME Hydrogen Isotope Analysis. The isotopic composition of FAMEs was 
measured on a Thermo Scientific 253 Plus stable isotope ratio mass spectrometer 
coupled to a Trace 1310 GC via Isolink II pyrolysis/combustion interface (GC/P/
IRMS). Chromatographic conditions were identical to those from the GC-FID and 
GC-MS stated above except for extension of the temperature program to baseline 
separate all major analytes (40 °C hold for 2 min, 20 °C/min to 120 °C, then 
2 °C/min ramp to 240 °C; 30 °C/min ramp to 330 °C, 4-min hold) and injection 
via programmable temperature vaporization inlet (ramped from 40 to 400 °C) to 
ensure quantitative transfer from the inlet to the column. Peaks were identified 
based on retention order and relative height based on coregistration with GC-FID 
and GC-MS chromatograms.

Measured isotope ratios were corrected for scale compression, linearity, and 
memory effects using natural abundance and isotopically enriched fatty acid 
esters of known isotopic composition ranging from –231.2 ‰ to +3,972 ‰ vs. 
VSMOW (SI Appendix, Supplementary Text). Memory (peak-to-peak carryover) 

effects are important to correct for given the wide range of peak areas and isotopic 
values encountered in this study and the known impact of memory effects on 
H isotope measurements (86, 87). Full memory effect corrections for standard 
mixtures of natural abundance and enriched fatty acid esters lead to a >44% 
improvement in residual SE (SI Appendix, Table S1 and Fig. S8). The multivariate 
linear regression calibration for the enriched samples (SI Appendix, Eqs. S1–S3 
and Table S1) included standards ranging in mass 2 areas from 1.74 Vs (~25 ng) 
to 69.67 Vs (~975 ng) and lead to an overall RMSE of the calibration of 60.4‰ 
stemming from the substantial dynamic range of the isotope standards and 
believed to accurately reflect the elevated uncertainty that should be expected in 
the isotopically diverse samples. The conservative analytical SEs ranged from 46.5 
to 269 ‰ depending on peak area with larger error estimates for smaller peaks 
that were more affected by memory effects (SI Appendix, Supplementary Text). The 
hydrogen isotope calibration was performed in R using the packages isoreader  
[v 1.3.0 (88)] and isoprocessor (v 0.6.11) available at github.com/isoverse.

Calibrated isotope ratios measured via GC/P/IRMS were further corrected for H 
added during derivatization to FAMEs, as well as for analytical and replicate error 
as follows: First, the 2F of methanol used for base-catalyzed transesterification 
was measured by taking an aliquot of anhydrous methanol reagent (the exact 
stock used for transesterification) and derivatizing a phthalic acid with a known H 
isotopic composition (Arndt Schimmelmann, Indiana University) via acid catalysis. 
The resulting phthalic methyl ester was analyzed by GC/P/IRMS and a correction 
was applied to all values (SI Appendix, Supplemental Text).

Growth Rate Calculations. Calculations of biosynthetic activity focus on the 
isotopic composition of FAMEs because the hydrocarbon skeleton of fatty acids 
consists only of C–H bonds that are nonexchangeable on biological time scales 
(89), unlike the readily exchangeable H bound to O, N, P, and S in parts of lipid 
headgroups, proteins, and nucleic acids. The H tracer is thus stably incorporated 
into fatty acids tails during biological activity. The resulting isotopic enrichment 
of fatty acids in intact cellular lipids is described by the following equation (26):

F
t
− F0 =

(

1 − e
−r⋅t

)

⋅

(

a ⋅ F
L
− F0

)

,

where r is the specific biosynthesis rate (1/days); t is the duration of tracer expo-
sure (days); a is the assimilation efficiency and fractionation of water hydrogen 
during lipid biosynthesis (see ref. 26 and SI Appendix, Fig. S7); and F0, Ft, and 
FL are the fractional abundances of 2H in fatty acids before tracer incorporation, 
in fatty acids at time t, and in the isotopically labeled sample water. Solving this 
equation for r makes it possible to infer from the incubation time and isotopic 
measurements how quickly cellular fatty acids turn over. With lipid biosynthe-
sis reflecting a combination of growth and repair, this provides an upper/lower 
bound for the specific growth rate µ and apparent generation time TG of the 
microbial producers of a given lipid:

r = −
1

t
⋅ ln

F
t
− a ⋅ F

L

F0 − a ⋅ F
L

,

 � ≤ r ,

 T
G
=

ln(2)

�
≥

ln(2)

r
,

These calculations yield compound-specific growth rate and generation time 
estimates that can be viewed by themselves or aggregated into assemblage-level 
estimates of community growth by calculating an abundance-weighted mean:

weightedmean =

∑N

i=1
x
i
w
i

∑N

i=1
x
i

where xi is the isotopic fractional abundance of compound i and wi is the rela-
tive abundance (weighting) of compound i. As discussed, these estimates aggre-
gate cell-to-cell variations in growth. Uncertainty in each set of measurements 
was propagated through our calculations of µ by SE propagation (SI Appendix, 
Supplementary Text).

16S Ribosomal RNA Gene Sequencing. To characterize the microbial com-
munity composition of each soil type before SIP incubation, DNA was extracted D
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from soil subsamples in triplicate and with negative control using the DNeasy 
PowerSoil DNA isolation kit (Qiagen), according to the manufacturer’s instruc-
tions with one minor modification; samples were heated with Solution C1 for 
10 min at 65 °C in a dry heat block prior to bead beating. Extracted DNA samples 
were amplified in duplicate using Platinum II Hot-Start PCR Master Mix (Thermo 
Fisher Scientific) and the 16S rRNA gene primers 515F and 806R with Illumina 
sequencing adapters and unique 12-bp barcodes. The PCR program was 94 °C 
for 2 min followed by 35 cycles of 94 °C (15 s), 60 °C (15 s), 68 °C (1 min), and a 
final extension at 72 °C for 10 min. Amplification was verified via gel electropho-
resis. Amplicons were cleaned and normalized with the SequalPrep Normalization 
Plate (Thermo Fisher Scientific) following the manufacturer’s instructions and 
then pooled together. Sequencing was performed on an Illumina MiSeq using 
a v2 300 cycle kit with paired-end reads at the University of Colorado BioFrontiers 
Institute Next-Gen Sequencing Core Facility.

To prepare samples for analysis with the DADA2 (version 1.10.1) bioinformatic 
pipeline (90), reads were demultiplexed with adapters and primers were removed 
using standard settings for cutadapt (version 1.8.1, Martin 2011). We used stand-
ard filtering parameters with slight modifications for 2 × 150 bp chemistry where 
forward reads were not trimmed and reverse reads were trimmed (truncLen) to 140 
base pairs. In addition, we truncated reads at the first nucleotide with a quality score 
(truncQ) below 11 and a maximum allowed error rate (maxEE) of 1. These filtering 
parameters resulted in a mean of 95.7% of reads retained, and this was visually 
assessed with quality profiles for each sample. Reads were dereplicated, paired ends 
were merged, amplicon sequence variants (ASVs) were assigned, and chimeras were 
removed (98.23% of reads were not chimeric). Finally, taxonomy was assigned to 
each ASV against the SILVA (v132) reference database (91). We removed all chloro-
plast, mitochondria, and eukaryotic reads from the ASV table, which resulted in an 
average of 36,029 reads per sample (range 27,074 to 58,528 reads), with the ASV 
table subsequently rarefied to 27,000 reads per sample. Blank samples had far 
fewer reads than actual samples (mean of 193 reads compared to 35,455 reads per 
sample), and the four genera detected in blanks (Thermus, Geobacillus, Deinococcus, 
and Pseudomonas) were not consistently detected and were below the 1% relative 
abundance threshold for inclusion in sample analyses. Taxonomic composition of 
the samples was compared across soil types (SI Appendix, Fig. S3).

BacDive Database Analysis and Literature Survey. To infer relationships 
between lipid profiles observed across our SIP incubations and high-level tax-
onomy, we queried the Bacterial Metadiversity Database (BacDive) (49) for all 
available fatty acid profiles using the BacDive API client implemented by the 
BacDiveR package (92). We generated a table of 4,959 fatty acid profiles indexed 
by the taxonomy reported in the database and used principal component analysis 
to generate SI Appendix, Fig. S2, grouped at the phylum level. We appended 24 
manually curated fungal fatty acid profiles to this dataset, and this combined table 
is available as Dataset S2. We looked at relationships between fatty acid profiles 
at the phylum level (SI Appendix, Fig. S1) and conducted a principal component 
analysis of fatty acid composition and taxonomy (SI Appendix, Fig. S2).

To compare LH-SIP-measured rates of growth to other methods, we surveyed 
26 previously reported estimates of microbial growth and compared them to 

the abundance-weighted mean estimates of our study (Datasets S3 and S4). We 
collected specific passages, sentences, and tables and manually digitized these 
reported values, noting the specific mention of microbial growth. Studies use 
various terminology and units including growth rate (day−1), generation time 
(days), turnover rate (day−1), turnover time (days), or doubling times (days). 
Turnover time was converted to turnover rate by taking the reciprocal value. We 
include both “growth rates” and “turnover rates” as the distinction between the 
two is that turnover explicitly assumes a steady state of biomass (loss rates equal 
production rates). Generation time/doubling time estimates are converted to 
growth rates as described in this study. We plot the mean value from each study 
(Fig.  3), either reported in the manuscript or calculated from the upper- and 
lower-bounds reported in the manuscript.

Soil Geochemistry. Soils were analyzed at the Colorado State University Soil, 
Water, and Plant Testing Laboratory for routine determination of soil characteris-
tics. In short, a KCl extract was used to quantify soil nitrate (93). An AB-DTPA extract 
was used to quantify soil P, Zn, Fe, Mn, Cu, and S (94). Organic matter percentages 
were calculated by determining the weight loss of samples after ignition. These 
data are available in Dataset S1.

Data, Materials, and Software Availability. Analysis Scripts data have been 
deposited in GitHub (https://github.com/KopfLab/Caro-et-al.-Soil-Turnover) (95). 
All study data are included in the article and/or SI Appendix.
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